I SI	EMESTE 	R		Teaching	Hours /Week		Exami	ination		
SI. No	Course	Course Code	Course Title	Theory	Practical/ Field work/ Assignment	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	РСС	18ELD11	Advanced Engineering Mathematics	04		03	40	60	100	4
2	PCC	18ECS12	Advanced Digital Signal Processing	04		03	40	60	100	4
3	PCC	18EVE13	Advanced Embedded System	04		03	40	60	100	4
4	PCC	18ELD14	Digital Circuit and Logic Design	04		03	40	60	100	4
5	PCC	18EVE15	Digital VLSI Design	04		03	40	60	100	4
6	PCC	18ELDL16	Embedded Systems Lab	-	04	03	40	60	100	2
7	PCC	18RMI17	Research Methodology and IPR	02		03	40	60	100	2
			TOTAL	22	04	21	280	420	700	24

Note: PCC: Professional core.

Internship: All the students shall have to undergo mandatory internship of 6 weeks during the vacation of I and II semesters and /or II and III semesters. A University examination will be conducted during III semester and prescribed credit shall be included in the III semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared as failed and have to complete during subsequent University examination after satisfying the internship requirements.

II SEMESTER

				Teaching H	Iours /Week		Exam	ination	I	
SI. No	Course	Course Code	Course Title	Theory	Practical/ Field work/ Assignment	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	18ELD21	Advanced Computer Architecture	04		03	40	60	100	4
2	PCC	18EVE22	Real Time Operating System	04		03	40	60	100	4
3	PCC	18ECS23	Error Control Coding	04		03	40	60	100	4
4	PEC	18XXX24X	Professional Elective 1	04		03	40	60	100	4
5	PEC	18XXX25X	Professional Elective 2	04		03	40	60	100	4
6	PCC	18ELDL26	Digital Circuits Simulation Lab		04	03	40	60	100	2
7	PCC	18ELD27	Technical Seminar		02		100		100	2
		ТО	TAL	20	06	18	340	360	700	24

Note: PCC: Professional core, PEC: Professional Elective.

P	rofessional Elective 1		Professional Elective 2
Course Code under 18XXX24X	Course title	Course Code under 18XXX25X	Course title
18ECS241	Wireless Sensor Networks	18EIE251	Automotive Electronics
18EVE242	Nanoelectronics	18EVE252	SoC Design
18ECS243	Cryptography and Network Security	18ELD253	Micro Electro Mechanical Systems

Note:

1. Technical Seminar: CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide in any and a senior faculty of the department. Participation in seminar by all postgraduate students of the same and other semesters of the programme shall be mandatory.

The CIE marks awarded for Technical Seminar, shall be based on the evaluation of Seminar Report, Presentation skill and Question and Answer session in the ratio 50:25:25.

2. Internship: All the students shall have to undergo mandatory internship of 6 weeks during the vacation of I and II semesters and /or II and III semesters. A University examination will be conducted during III semester and prescribed credit shall be included in the III semester. Internship shall be considered as a head of passing and shall be considered for the award of degree. Those, who do not take-up/complete the internship shall be declared as failed and have to complete during subsequent University examination after satisfying the internship requirements.

III SEMESTER

				Teaching I	Hours /Week		Exam	ination		
SI. No	Course	Course Code	Course Title	Theory	Practical/ Field work/ Assignment	Duration in hours	CIE Marks	SEE Marks	Total Marks	Credits
1	PCC	18ELD31	Synthesis and Optimization of Digital Circuits	04		03	40	60	100	4
2	PEC	18XXX32X	Professional Elective 3	04		03	40	60	100	4
3	PEC	18XXX33X	Professional Elective 4	04		03	40	60	100	4
4	Proj	18XXX34	Evaluation of Project phase -1		02		100		100	2
5	INT	18ELD35	Internship	intervening		03	40	60	100	6
		TO	TAL	12	02	12	260	240	500	20

Note: PCC: Professional core, PEC: Professional Elective, Proj	: Project, INT: Internsmp.
Ducfassional Elective 2	Duofoccion

Р	rofessional Elective 3		Professional Elective 4
Course Code under 18XXX32X	Course title	Course Code under 18XXX33X	Course title
18ECS321	Advances in Image Processing	18EVE331	VLSI Design for Signal Processing
18EVE322	CMOS RF Circuits Design	18ESP332	Pattern Recognition & Machine Learning
18ESP323	Communication System Design using DSP Algorithms	18ECS333	Internet of Things

Note:

1. Project Phase-1: Students in consultation with the guide/co-guide if any, shall pursue literature survey and complete the preliminary requirements of selected Project work. Each student shall prepare relevant introductory project document, and present a seminar. CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide and a senior faculty of the department. The CIE marks awarded for project work phase -1, shall be based on the evaluation of Project Report, Project Presentation skill and Question and Answer session in the ratio 50:25:25.

SEE (University examination) shall be as per the University norms.

2. Internship: Those, who have not pursued /completed the internship shall be declared as failed and have to complete during subsequent University examinations after satisfying the internship requirements.

Internship SEE (University examination) shall be as per the University norms.

IV SEMESTER

					Teaching Hours /Week		Examination				
SI. No	Course	Course Code	Course Title		Theory	Practical/ Field work/ Assignment	Duration in hours	CIE Marks	SEE Marks Viva voce	Total Marks	Credits
1	Proj	18ELD41	Project work phase -2			04	03	40	60	100	20
	•		•	TOTAL		04	03	40	60	100	20

Note: Proj: Project.

Note:

1. Project Phase-2:

CIE marks shall be awarded by a committee comprising of HoD as Chairman, Guide/co-guide, if any and a Senior faculty of the department. The CIE marks awarded for project work phase -2, shall be based on the evaluation of Project Report subjected to plagiarism check, Project Presentation skill and Question and Answer session in the ratio 50:25:25.

SEE shall be at the end of IV semester. Project work evaluation and Viva-Voce examination (SEE), after satisfying the plagiarism check, shall be as per the University norms.

<u>M.Tech 2018-Digital Electronics/ Electronics –</u> <u>FIRST SEMESTER SYLLABUS</u>

	ADVANCED ENGINE	ERING MATHEMAT	ICS	
[A s	s per Choice Based Credit SEMESTI		neme]	
Subject	18ELD11	CIE Marks		40
Number of Lecture Hours/Week	04	SEE Marks		60
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours		03
<u> </u>	CRED : This course will enable st	ITS – 04		
	of variations. Id probability theory and r ations of electronics and co	-		
	Modules			RBT Level
	Мос	lule -1		
example. Linearly ir problems. Linear	ctor spaces and sub-spa idependent and dependent transformations-definition strative examples (Text Boo	vectors- Basis-defi s. Matrix form	nition and	L1, L2
	Mod	ule -2		
Given's method. Or	en values and eigen vector thogonal vectors and orth rocess (Text. Book:1).	s of real symmetric		L1, L2
	Mod	ule -3		
higher order deriv	ons : - hal-Eulers equation. Funct vatives, Functional on s ms-variation problems with	everal dependent	variables.	L1, L2
	Mod	lule -4		

Probability Theory:-Review of basic probability theory. Definitions of random variables and probability distributions, probability mass and density functions, expectation, moments, central moments, characteristic functions, probability generating and moment generating functions-illustrations. Poisson, Gaussian and Erlang distributions-examples. (Text Book: 3)

Module -5

Engineering Applications on Random processes:- Classification. Stationary, WSS and ergodic random process. Auto-correlation functionproperties, Gaussian random process. (Text Book: 3)

Course Outcomes: After studying this course, students will be able to:

CO-1: Understand vector spaces, basis, linear transformations and the process of obtaining

matrix of linear transformations arising in magnification and rotation of images.

CO-2: Apply the technique of singular value decomposition for data compression,

least square approximation in solving inconsistent linear systems.

CO-3: Utilize the concepts of functional and their variations in the applications of communication systems, decision theory, synthesis and optimization of digital circuits. CO-4: Learn the idea of random variables (discrete/continuous) and probability distributions in analyzing the probability models arising in control systems and system communications.

CO-5: Analyze random process through parameter-dependent variables in various random processes.

Question paper pattern:

• Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.

- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Books:

1. David C.Lay, Steven R.Lay and J.J.McDonald: "LinearAlgebra and its Applications",

5thEdition, Pearson Education Ltd., 2015

- Elsgolts, L.:"Differential Equations and Calculus of Variations", MIR Publications, 3rdEdition, 1977.
- 3. T.Veerarajan: "Probability, Statistics and Random Process", 3rd Edition, Tata Mc-Graw Hill Co., 2016.

Reference Books:

- Gilbert Strang: Introduction to Linear Algebra, 5thEdition, Wellesley-Cambridge Press., 2016
- Richard Bronson: "Schaum's Outlines of Theory and Problems of Matrix Operations", McGraw-Hill, 1988.
- 3. Scott L.Miller, DonaldG.Childers: "Probability and Random Process with application to Signal Processing", Elsevier Academic Press, 2nd Edition, 2013.

Web links:

- 1. <u>http://nptel.ac.in/courses.php?disciplineId=111</u>
- 2. <u>http://www.class-central.com/subject/math(MOOCs)</u>
- 3. <u>http://ocw.mit.edu/courses/mathematics/</u>
- 4. <u>www.wolfram.com</u>

	VANCED DIGITAL SIGNAL		
[As per	Choice Based Credit Syste SEMESTER – I	m (CBCS) Scheme]	
Course Code	18ECS12	CIE Marks	40
Number of	04	SEE Marks	60
Lecture			
Hours/Week			
Total Number of	50	Exam Hours	03
Lecture Hours	(10 Hours per Module)		
	Credits – 04		
-	: This course will enable stu		
• Understand M	Multirate digital signal pro	cessing principles a	and its
applications.			
	various spectral component		
signal using	different spectral estim	ation methods su	ich as
Parametric an	d Nonparametric.		
• Design and in	mplement an optimum ada	ptive filter using LM	AS and
RLS algorithm	IS.	-	
• Understand	the concepts and mather	natical representati	ons of
Wavelet transf	forms.	-	
	Modules		RBT
			Levels
	Module-1		
Multirate Digital	Signal Processing: Introd	luction, decimation	
by a factor 'D',	Interpolation by a factor	'I', sampling rate	
conversion by a	factor 'I/D', Implementation	n of sampling rate	
conversion, Mul	tistage implementation o	of sampling rate	L1, L2,
conversion, Appli	cations of multirate signal	processing, Digital	L3
filter banks, two	channel quadrature mirro	or filter banks, M-	
channel QMF ban	k. (Text 1)		
	Module-2		
Linear prediction	n and Optimum Linear	Filters: Random	
signals, Correlatio	n Functions and Power S _J	pectra, Innovations	
Representation of	a Stationary Random Pro	cess. Forward and	L1, L2,
	Prediction. Solution of the	-	L3
The Levinson-Du	rbin Algorithm. Propertie	es of the Linear	
Prediction-Error Fi	lters. (Text 1)		
	Module-3		
—	Applications of Adaptiv	_	
-	ation, Adaptive noise ca		
	of Speech Signals, Adaptiv		L3
	gorithm, Properties of LMS a	algorithm. Adaptive	
direct form filters-	RLS algorithm. (Text 1)		
	Module-4		
—	Estimation: Non parametric		
O		Mathad Dlasleman	1
Spectrum Estimati	on - Bartlett Method, Welch	Method, Blackman	
Spectrum Estimati and Tukey Method		Method, Blackman	L1, L2,

Relationship between the auto correlation and the model parameters, Yule and Walker methods for the AR Model Parameters, Burg Method for the AR Model parameters, Unconstrained least-squares method for the AR Model parameters, Sequential estimation methods for the AR Model parameters, ARMA Model for Power Spectrum Estimation. (Text 1) Module-5 WAVELET TRANSFORMS: The Age of Wavelets, The origin of Wavelets, Wavelets and other reality transforms, History of wavelets, Wavelets of the future. Continuous Wavelet and Short Time Fourier Transform: Wavelet Transform, Mathematical preliminaries, Properties of wavelets. Discrete Wavelet Transform: Haar scaling functions, Haar wavelet	L1, L2, L3
function, Daubechies Wavelets. (Chapters 1, 3 & 4 of Text 2)	
 Design multirate DSP Systems Implement adaptive signal processing algorithm Design active networks Understand advanced signal processing techniques, including mul processing and time-frequency analysis techniques 	ti-rate
 Question paper pattern: Examination will be conducted for 100 marks with questic containing 10 full questions, each of 20 marks. Each full question can have a maximum of 4 sub questions. There will be 2 full questions from each module covering all the the module. Students will have to answer 5 full questions, selecting one full from each module. The total marks will be proportionally reduced to 60 marks marks is 60. Text Books: "Digital Signal Processing, Principles, Algorithms and Applid JohnG. Proakis, Dimitris G.Manolakis, Fourth edition, Pearson-2. Insight into Wavelets- from Theory to Practice", K.P Ramachandran, Resmi- PHI Third Edition-2010. 	e topics of l question s as SEE cations", -2007.

	ADVANCED EM	BEDDED SYSTEM	
[As	s per Choice Based Credit SEMEST		me]
Subject	18EVE13	CIE Marks	40
Number of Lecture Hours/Week	04	SEE Marks	60
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
·	CRED	ITS – 04	
 the characteristic Describe the h Explain the an including memory 	he basic hardware components and attributes of an emb hardware software co-design architectural features of ARM y map, interrupts and exce CORTEX M3 using the var	edded system. n and firmware design I CORTEX M3, a 32 bi ptions.	approaches it microcontroller
	Modules		Revised Bloom's Taxonomy (RBT) Level
	Мо	dule -1	I
System, Memory, S Interface, Reset circ	em: Embedded vs Ge lication and purpose of Sensors, Actuators, LED, O cuits, RTC, WDT, Characte ems (Text 1: Selected Topic	ES. Core of an Em pto coupler, Commun ristics and Quality Att	lication
	Μοά	lule -2	
computational mo Integration and Components in en generated during c	e Co-Design, embedded fi odels, embedded firmwar testing of Embedded nbedded system developme compilation, simulators, em From Ch-7, 9, 12, 13).	irmware design appro re development lang Hardware and fir ent environment (IDE	guages, mware,), Files L1, L2, L3
	Мос	lule -3	I
ARM, Architecture	ocontroller: Thumb-2 tec of ARM Cortex M3, Varior egisters, Special Registers,	us Units in the archit	ecture, L1, L2, L3
	quence (Text 2: Ch 1, 2, 3)		

Instruction Sets : Assembly basics, Instruction list and description, useful instructions, Memory Systems, Memory maps, Cortex M3 implementation overview, pipeline and bus interface (Text 2: Ch-4, 5, 6).	L1, L2, L3
Module -5	
Exceptions, Nested Vector interrupt controller design, Systick Timer, Cortex-M3 Programming using assembly and C language, CMSIS (Text 2: Ch-7, 8, 10).	L1, L2, L3
 Course Outcomes: After studying this course, students will be able to: Understand the basic hardware components and their selection method be characteristics and attributes of an embedded system. Explain the hardware software co-design and firmware design approache Acquire the knowledge of the architectural features of ARM CORTEX M3, microcontroller including memory map, interrupts and exceptions. Apply the knowledge gained for Programming ARM CORTEX M3 for differ applications. 	s. a 32 bit
 Question paper pattern: Examination will be conducted for 100 marks with question paper of full questions, each of 20 marks. Each full question can have a maximum of 4 sub questions. There will be 2 full questions from each module covering all the module. Students will have to answer 5 full questions, selecting one full questimodule. The total marks will be proportionally reduced to 60 marks as SEE mathematical sectors. 	topics of th on from eac
Text Books: 1. K. V. Shibu, "Introduction to embedded systems", TMH education Pvt. Ltd	2009
2. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2 nd edn, Newne (Elsevier), 2010.	

Reference Book:

James K. Peckol, "Embedded systems- A contemporary design tool", John Wiley, 2008.

	Choice Based Credit System (C	<u>BIGN</u> CBCS) scheme]	
	SEMESTER – I		1
Course Code	18ELD14	CIE Marks	40
Number of Lecture Hours/Week	04	SEE Marks	60
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	Credits – 04		
Understand theDesign SequenAnalyze the fau	s: This course will enable studen e concepts of sequential machine tial Machines/Circuits alts in the design of circuits ection experiments to sequential	2S	
	Modules		RBT Levels
	Module-1		
Threshold Netw Transformation of	: Introductory Concepts, S vorks, Capabilities, Minimiz of Sequential Machines: The S efinitions, Capabilities.	ation, and	L1, L2,L3
	Module-2		
Faults, Failure-T	by Path Sensitizing, Detection olerant Design, Quadded Lo lt Diagnosis Hazards: Fault	gic, Reliable	L1, L2, L3
	8	Detection in	12, 13
	8	Detection in	<i>L2</i> , <i>L</i> 3
Fault-Location Exp Finite – State	ccuits.	Limitations of and Machine	L2, L3
Fault-Location Exp Finite – State Minimization,	Module-3 Deriments, Boolean Differences, Machines, State Equivalence a	Limitations of and Machine	L1, L2, L3
Fault-Location Exp Finite – State Minimization, Machines. Structure of Sequ Assignments Usin Reductions of th and Autonomous Partitions by sta	Module-3 Deriments, Boolean Differences, Machines, State Equivalence a Simplification of Incomplete	Limitations of and Machine ly Specified cample, State ed Partitions, ndependence on of closed n Sequential	L1,

State Identifications and Fault-Detection Experiments: Homing Experiments, Distinguishing Experiments, Machine Identification, Fault Detection Experiments, Design of Diagnosable Machines, Second Algorithm for the Design of Fault Detection Experiments, Fault-Detection.	
Course Outcomes: After studying this course, students will be able to:	
• Understand the concepts of sequential machines	
Design Sequential Machines/Circuits	
 Analyze the faults in the design of circuits 	
 Apply fault detection experiments to sequential circuits 	
Question paper pattern:	
• Examination will be conducted for 100 marks with question pa containing 10 full questions, each of 20 marks.	ıper
• Each full question can have a maximum of 4 sub questions.	
• There will be 2 full questions from each module covering all the top	pics
of the module.	
• Students will have to answer 5 full questions, selecting one	full
question from each module.	
• The total marks will be proportionally reduced to 60 marks as S marks is 60.	SEE
Text Book:	
Zvi Kohavi, "Switching and Finite Automata Theory", 2nd Edition, TM 2008, ISBN: 978_0_07_099387_7	ИН,
Reference Books:	
1. Charles Roth Jr., "Digital Circuits and logic Design", 7 th edn, Cengage	5
Learning, 2014.	
2. Parag K Lala, "Fault Tolerant And Fault Testable Hardware Design", Prentice Hall Inc. 1985.	
3. E. V. Krishnamurthy, "Introductory Theory of Computer", Macmillan Press Ltd, 1983	
 4. Mishra & Chandrasekaran, "Theory of computer science – Auton Languages and Computation", 2nd Edition, PHI, 2004. 	ıata,

	<u>DIGITAL VLSI DES</u> As per Choice Based Credit Sys[] 	tem (CBCS) schem	e]
Subject	18EVE15	CIE Marks	40
Number of Lecture Hours/Week	04	SEE Marks	60
Total Number of	50 (10 Hours per Module)	Exam Hours	03
	CREDITS – 04	•	
 Explain V Learn Statinverter circ Infer state Outline to that are used 	bjectives: This course will enable structure VLSI Design Methodologies atic and Dynamic operation principle cuit. The of the art Semiconductors Memory the comprehensive coverage of Method ed to reduce the Power Dissipation of the VLSI and ASIC design	s, analysis and des circuits. dologies and Desigr	n practice
Illustrate	VLSI and ASIC design.		
	Modules		Revised Bloom's Taxono my (RBT) Level
	Module -1		
MOS Transist	or: The Metal Oxide Semiconductor	r (MOS) Structure,	L1, L2
MOS Transist Scaling and Sr MOS Inverter	tem under External Bias, Structure or, MOSFET Current-Voltage Charac nall-Geometry Effects. rs-Static Characteristics: Introduct ters with n_Type MOSFET Load.	cteristics, MOSFET	
Module -2			
MOS Inverter MOS Inverter Introduction, Inverter Design Parasitics, Ca	s-Static Characteristics : CMOS Inverses: Switching Characteristics and In Delay-Time Definition, Calculation n with Delay Constraints, Estimation of Interconnect Delay, CMOS Inverters.	terconnect Effects: of Delay Times, on of Interconnect	
	Module -3		
Memory (DRA	or Memories: Introduction, Dynami M), Static Random Access Memory (S sh Memory, Ferroelectric Random	SRAM), Nonvolatile	L1, L2, L3

Module -4	
Dynamic Logic Circuits : Introduction, Basic Principles of Pass Transistor Circuits, Voltage Bootstrapping, Synchronous Dynamic Circuit Techniques, Dynamic CMOS Circuit Techniques,High Performance Dynamic CMOS circuits. BiCMOS Logic Circuits : Introduction, Bipolar Junction Transistor (BJT): Structure and Operation, Dynamic Behavior of BJTs, Basic BiCMOS Circuits: Static Behavior, Switching Delay in BiCMOS Logic Circuits, BiCMOS Applications.	L1,L2, L3
Module -5	1
 Chip Input and Output (I/O) Circuits: Introduction, ESD Protection, Input Circuits, Output Circuits and L(di/dt) Noise, On- Chip Clock Generation and Distribution, Latch-Up and Its Prevention. Design for Manufacturability: Introduction, Process Variations, Basic Concepts and Definitions, Design of Experiments and Performance Modeling. 	L2, L3
Course outcomes: After studying this course, students will be able to:	1
 Analyse issues of On-chip interconnect Modelling and Interconne calculation. Analyse the Switching Characteristics in Digital Integrated Circui Use the Dynamic Logic circuits in state-of-the-art VLSI chips. Study critical issues such as ESD protection, Clock distribution, buffering, and Latch phenomenon Use Bipolar and Bi-CMOS circuits in very high speed design. Question Paper Pattern	ts.
 The question paper will have 10 full questions carrying equal man Each full question consists of 16 marks with a maximum of questions. There will be 2 full questions from each module covering all the the module The students will have to answer 5 full questions, selecting question from each module. 	four sub topics of
Text Book : Sung Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: A Design", Tata McGraw-Hill, Third Edition.	nalysis and
 Reference Books: 1. Neil Weste and K. Eshragian, "Principles of CMOS VLSI Design: Perspective", Second Edition, Pearson Education (Asia) Pvt. Ltd. 200 2. Wayne, Wolf, "Modern VLSI Design: System on Silicon" Pre PTR/Pearson Education, Second Edition, 1998. 3. Douglas A Pucknell & Kamran Eshragian, "Basic VLSI Design Edition (original Edition – 1994). 	0. entice Hall

	EMBEDDED SYSTEMS			
[As per Choice Based Credit System (CBCS) scheme] SEMESTER – I				
Laboratory Code	18ELDL16	CIE Marks	40	
Number of Lecture Hours/Week	01Hr Tutorial (Instructions)+ 03 Hours Laboratory	Exam Marks	60	
•		Exam Hours	03	
	CREDITS – 02			
 Practice 1 	the different concepts and application	ns of C programm	ing environment	
	the different concepts and application A CORTEX M3.	is of C programm	ing environment	
with ARM	A CORTEX M3.	ns of C programm	Revised	
	A CORTEX M3.	ns of C programm	Revised Bloom's	
with ARM	A CORTEX M3.	ns of C programm	Revised	
with ARM	A CORTEX M3.	ns of C programm	Revised Bloom's Taxonomy (RBT) Level	
with ARM Laboratory Ex Part A: EDA Using Cadence	e OrCAD or OrCAD Lite or any El		Revised Bloom's Taxonomy (RBT) Level L2,L3,L4	
with ARM Laboratory Ex Part A: EDA Using Cadence and verify the	A CORTEX M3. periments e OrCAD or OrCAD Lite or any El following:		Revised Bloom's Taxonomy (RBT) Level L2,L3,L4	
with ARM Laboratory Ex Part A: EDA Using Cadence and verify the a) 3½ Digit	e OrCAD or OrCAD Lite or any El		Revised Bloom's Taxonomy (RBT) Level L2,L3,L4	
with ARM Laboratory Ex Part A: EDA Using Cadence and verify the a) 3½ Digit b) Monolith	A CORTEX M3. periments e OrCAD or OrCAD Lite or any El following: t Digital Voltmeter		Revised Bloom's Taxonomy (RBT) Level L2,L3,L4	
with ARM Laboratory Ex Part A: EDA Using Cadence and verify the a) 3½ Digit b) Monolith c) Regulated d) Batch co	A CORTEX M3. periments e OrCAD or OrCAD Lite or any El following: t Digital Voltmeter ic function Generator d Power supplies unter using TTL ICs.		Revised Bloom's Taxonomy (RBT) Level L2,L3,L4	
with ARM Laboratory Ex Part A: EDA Using Cadence and verify the a) 3½ Digit b) Monolith c) Regulated d) Batch co e) DAC and	A CORTEX M3. periments e OrCAD or OrCAD Lite or any El following: t Digital Voltmeter ic function Generator d Power supplies unter using TTL ICs. . ADC		Revised Bloom's Taxonomy (RBT) Level L2,L3,L4	
with ARM Laboratory Ex Part A: EDA Using Cadence and verify the a) 3½ Digit b) Monolith c) Regulated d) Batch co e) DAC and f) P, PI, PID	A CORTEX M3. periments e OrCAD or OrCAD Lite or any El following: t Digital Voltmeter ic function Generator d Power supplies unter using TTL ICs.		Revised Bloom's Taxonomy (RBT) Level L2,L3,L4	

 PART-B: ARM-CORTEX M3 Programming to be done using Keil uVision 4 and download the program on to a M3 evaluation board such as NXP LPC1768 or ATMEL ATSAM3U] a) Write an Assembly language program to calculate 10+9+8++1 b) Write a Assembly language program to link Multiple object files and link them together. c) Write a Assembly language program to store data in RAM. d) Write a C program to Output the "Hello World" message using UART. e) Write a C program to Design a Stopwatch using interrupts. f) Write an Assembly Language Program for locking a Mutex. h) Write a SVC handler in C. Use the wrapper code to extract the correct stack 	L3
 frame starting location. The C handler can then use this to extract the stacked PC location and the stacked register values. Course outcomes: On the completion of this laboratory course, the st able to: Understand the computer aided design tools for the electronic circ Design an analog and digital systems using Cadence OrCAD, OrCA EDA tool. Develop assembly programs for different applications using ARM Co Keil uVision-4 tool. Develop C Programs for different applications using ARM-Cortex Mission 	uit designs. AD Lite or any ortex M3 and
 uVision-4 tool. Conduct of Practical Examination: All laboratory experiments are to be included for practical exam For examination, two questions using different tool to be set. Students are allowed to pick one experiment from the lot. Strictly follow the instructions as printed on the cover page of an breakup of marks. Change of experiment is allowed only once and Marks allotted to part to be made zero. 	ination. swer script for

[As per Choic		OGY AND IPR	
	e Based Credit Sys	tem (CBCS) scheme] -I	
Course Code	18RMI17	CIE Marks	40
Number of Lecture Hours/Week	02	Exam Hours	03
Total Number of Lecture Hours	25	SEE Marks	60
Course objectives:	Credits - 02		
 To explain the function To explain carrying theoretical and concerns To explain various removed the detail of data collections. To explain the detail of data collections. To explain the art of reports. To explain various for business impact in the transmission of the tran	out a literature eptual frameworks search designs ar s of sampling des of interpretation orms of the intelle he changing globa	e search, its review s and writing a review of their characteristic signs, and also differ and the art of write ectual property, its re l business environme	, developin v. cs. ent method ing researc elevance an
 To discuss leading In 			4 - 11 4 1
Property Rights.	iternational instru	aments concerning In	tellectual
		iments concerning in	Teachin Hours/ RBT Level
Property Rights.■ Module-1 Research Methodology: Intr of Research, Motivation in Approaches, Significance o Methodology, Research and S	oduction, Meaning Research, Types f Research, Rese Scientific Method, earch Process, Crit	of Research, Objective of Research, Researc earch Methods versu Importance of Knowin eria of Good Research	Teachin Hours/ RBT Level s 05 h s L1, L2
Property Rights. Module-1 Research Methodology: Intr of Research, Motivation in Approaches, Significance o Methodology, Research and S How Research is Done, Rese	oduction, Meaning Research, Types f Research, Rese Scientific Method, earch Process, Crit y Researchers in In-	of Research, Objective of Research, Researc earch Methods versu Importance of Knowin eria of Good Research dia.	r Teachin Hours/ RBT Level s 05 h us L1, L2

Module-3

Research Design: Meaning of Research Design, Need for Research Design, Features of a Good Design, Important Concepts Relating to Research Design, Different Research Designs, Basic Principles of Experimental Designs, Important Experimental Designs. Design of Sample Surveys: Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. ■	05 L1, L2
Module-4	
 Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method. Interpretation and Report Writing: Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout. Interpretation and Report Writing (continued): of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports. ■ 	05 L1, L2, L3, L4
Module-5	
Intellectual Property: The Concept, Intellectual Property System in India, Development of TRIPS Complied Regime in India, Patents Act, 1970, Trade Mark Act, 1999, The Designs Act, 2000, The Geographical Indications of Goods (Registration and Protection) Act1999, Copyright Act,1957, The Protection of Plant Varieties and Farmers' Rights Act, 2001, The Semi-Conductor Integrated Circuits Layout Design Act, 2000, Trade Secrets, Utility Models, IPR and Biodiversity, The Convention on Biological Diversity (CBD) 1992, Competing Rationales for Protection of IPRs, Leading International Instruments Concerning IPR, World Intellectual Property Organisation (WIPO), WIPO and WTO, Paris Convention for the Protection of Industrial Property, National Treatment, Right of Priority, Common Rules, Patents, Marks, Industrial Designs, Trade Names, Indications of Source, Unfair Competition, Patent Cooperation Treaty (PCT), Advantages of PCT Filing, Berne Convention for the Protection of Literary and Artistic Works, Basic Principles, Duration of Protection, Trade Related Aspects of Intellectual Property Rights(TRIPS) Agreement, Covered under TRIPS Agreement, Features of the Agreement, Protection of Intellectual Property under TRIPS, Copyright and Related Rights, Trademarks, Geographical indications, Industrial Designs, Patents, Patentable Subject Matter, Rights Conferred, Exceptions, Term of protection, Conditions on Patent Applicants, Process Patents, Other Use without Authorization of the Right Holder, Layout-Designs of Integrated Circuits, Protection of Undisclosed Information, Enforcement of Intellectual Property Rights, UNSECO.■	05 L1, L2, L3, L4

Course outcomes:

At the end of the course the student will be able to:

- Discuss research methodology and the technique of defining a research problem
- Explain the functions of the literature review in research, carrying out a literature search, developing theoretical and conceptual frameworks and writing a review.
- Explain various research designs and their characteristics.
- Explain the art of interpretation and the art of writing research reports
- Discuss various forms of the intellectual property, its relevance and business impact in the changing global business environment and leading International Instruments concerning IPR.■

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

<u>M.Tech 2018-Digital Electronics/ Electronics –</u> <u>SECOND SEMESTER SYLLABUS</u>

	ADVANCED COMPUTER ARCHITECTURE			
[As per Choice Based Credit System (CBCS)				
	scheme] SEMESTER – II			
Subject Code		C Marks	40	
Number of Lecture	04 SE	E Marks	60	
Hours/Week Total Number of	EQ (10 House non Modulo)		00	
Lecture Hours	50 (10 Hours per Module) Exa Ho	-	03	
	CREDITS – 04			
Course objectives:	This course will enable students to:			
 Understand the 	ne basic concepts for parallel processing			
 Analyze progra 	am partitioning and flow mechanisms			
Apply pipelini	ng concept for the performance evaluation			
	anced processor architectures for suitable application	ations		
Know concept	s of Parallel Programming			
		Re	evised	
		Bl	oom's	
	Modules	Тах	konomy	
		(RB	T) Level	
Module -1				
	Models: The State of Computing, Multiprocess	ors		
	, Multivector and SIMD computers.			
-	ork Properties: Conditions of parallelism, Progr	ram L1,I	L2, L3	
	luling, Program Flow Mechanisms.			
Module -2				
-		and		
-	rocessing Applications, Speedup Performance La	ws, L1,I	L2, L3,	
Scalability Analysis				
	hory Hierarchy: Advanced processor technologication Dragonage Margary Hierarchy Technologication			
Virtual Memory Tech	Vector Processors, Memory Hierarchy Technology	, gy,		
Module -3	inology:			
Module -3				
-	ared Memory: Bus Systems, Cache Memory			
0	ed Memory Organizations, Sequential & Weak	L1,	L2, L3	
Consistency Model.				
	scalar Technologies: Linear Pipeline Processors,			
-	Processors, Instruction Pipeline Design, Arithmeti	C		
	perscalar Pipeline Design.			
Module -4				

 Multivector & SIMD Computers: Vector Processing principles, Multivector Multiprocessors, Compound Vector Processing, SIMD Computer Organization. Scalable, Multithreaded and Data Flow Computers: Latency Hiding Techniques, Principles of Multithreading, Fine Grain Multi Computers, Scalable and Multithreaded Architectures, Data Flow and Hybrid Architectures. 	L1, L2, L3
Module -5	I
 Parallel Models, Languages and Compilers: Parallel Programming Models, Parallel Languages & Compilers, Dependence Analysis and Data Arrays, Code Optimization and Scheduling, Loop Parallelization and Pipelining. Parallel Program Development and Environments: Parallel Programming Environments, Synchronization and Multi Processor Modes, Shared Variable Program Structures. 	L1, L2, L3
 Course outcomes: At the end of this course, the students will be able to Understand the basic concepts for parallel processing Analyze program partitioning and flow mechanisms Apply pipelining concept for the performance evaluation Learn the advanced processor architectures for suitable applicatio Understand parallel Programming 	
Question paper pattern:	
 Examination will be conducted for 100 marks with question paper of full questions, each of 20 marks. Each full question can have a maximum of 4 sub questions. 	-
• There will be 2 full questions from each module covering all the module.	topics of the
• Students will have to answer 5 full questions, selecting one full of each module.	-
• The total marks will be proportionally reduced to 60 marks as SEE m	arks is 60.
Text Book: Kai Hwang & Narendra Jotwani, "Advanced Computer Architecture Scalability, Programmability", McGraw Hill Education, 3 rd Edition, 2 978-93-392-2092-1.	
Reference Books:	
 1. M.J. Flynn, "Computer Architecture, Pipelined and Parallel Process Narosa Publishing, 2002. 	or Design",
 Michael J Quinn, "Parallel programming in C with MPI and OpenMI McGraw Hill, 2013. 	P", Tata
3. Ananth Grama " An Introduction to Parallel Computing: Design and Algorithms" 2nd Edn., Pearson, 2004.	l Analysis of

<u>Real Time Operating System</u> [As per Choice Based credit System (CBCS) Scheme SEMESTER – II			
Subject Code	18EVE22	CIE Marks	40
Number of Lecture Hours/Week	04	SEE marks	60
Total Number of Lecture Hours	50(10 Hours per Module)	Exam Hours	03

CREDITS – 04

Course Objectives: This course will enable the students to:

- Introduce the fundamental concepts of Real Time Operating Systems and the real time embedded system
- Apply concepts relating to operating systems such as Scheduling techniques, Thread Safe Reentrant Functions, Dynamic priority policies.
- Describe concepts related to Multi resource services like blocking, Deadlock, live lock & soft real-time services.
- Discuss Memory management concepts, Embedded system components, Debugging components and file system components.
- Study programs for multithreaded applications using suitable data structures.

Modules	RBT Level
Module 1	
Real-Time Systems and Resources: Brief history of Real Time Systems, A brief history of Embedded Systems. System Resources, Resource Analysis, Real-Time Service Utility, Scheduler concepts, Real-Time OS, State transition diagram and tables, Thread Safe Reentrant Functions. (Text 1: Selected sections from Chap. 1, 2)	L1,L2,L3
Module 2	•
Processing with Real Time Scheduling: Scheduler Concepts, Preemptive Fixed Priority Scheduling Policies with timing diagrams and problems and issues, Feasibility, Rate Monotonic least upper bound, Necessary and	L1,L2,L3
Sufficient feasibility, Deadline –Monotonic Policy, Dynamic priority policies, Alternative to RM policy. (Text 1: Chap. 2,3,7)	
Module 3	
Memory and I/O: Worst case execution time, Intermediate I/O, Shared Memory, ECC Memory, Flash file systems. Multi-resource Services, Blocking, Deadlock and live lock, Critical sections to protect shared resources, Missed deadline, QoS, Reliability and Availability, Similarities and differences, Reliable software, Available software. (Text 1: Selected topics from Chap. 4,5,6,7,11)	L1,L2,L3
Module 4	
Firmware Components: The 3 firmware components, RTOS system software mechanisms, Software application components. Debugging	L1,L2,L3

Module 5	1
Process and Threads : Process and thread creations, Programs related to semaphores, message queue, shared buffer applications involving inter task/thread communication (Text 2: Chap. 11)	L1,L2,L3
Course Outcomes: After studying this course, students will be able	-0:
 Develop programs for real time services, firmware and RTOS, us fundamentals of Real Time Embedded System, real time service debugging methodologies and optimization techniques. Select the appropriate system resources (CPU, I/O, Memory, Ca Memory, Microcontroller/FPGA/ASIC to improve the system per Apply priority based static and dynamic real time scheduling terfor the given specifications. Analyze deadlock conditions, shared memory problem, critical s problem, missed deadlines, availability, reliability and QoS. Develop programs for multithreaded applications using suitabl techniques and data structure 	utilities, che, ECC formance. chniques ection
 Question paper pattern: The question paper will have 10 full questions carrying equal n Each full question consists of 16 marks with a maximum of questions. There will be 2 full questions from each module covering all the module The students will have to answer 5 full questions, selecting question from each module. 	of four sub he topics of
Text Books:	
1. Sam Siewert, "Real-Time Embedded Systems and Components Learning India Edition, 2007.	s", Cengage
	Design and

 Dream Tech Software Team, "Programming for Embedded Systems", John Wiley, India Pvt. Ltd., 2008.

[As per Cl	<u>ERROR CONTROL CODING</u> noice Based Credit System (CBC SEMESTER – 2		
Subject Code Number of Lecture Hours/Week	18ECS23 04	CIE Marks SEE marks	40 60
Total Number of	50 (10 Hours per Module)	Exam Hours	03
Lecture Hours	CREDITS – 04		
 Understand the con Discrete memoryles Apply modern algeb Compare Block cod Convolutional codes Detect and correct of systems. Implement different Analyze and implement 	ora and probability theory for the es such as Linear Block Codes, C	rate and capacit coding. Cyclic codes etc a cation and stora ers. decoders.	ind
convolutional codes Modules			RBT
Modules			Level
	Module 1		
discrete memoryless cl Channel coding theorem Introduction to alge Construction of Galoi statements of theorems	bra : Groups, Fields, binary fi s Fields GF (2^m) and its pro- s without proof) Computation us	annel Capacity eld arithmetic, operties, (Only	L1,L2,L3
	Module 2		
circuits, Syndrome considerations, Error Standard array and sy (SPC),Repetition codes,	Generator and parity check math and error detection, Minin detecting and error correctin yndrome decoding, Single Parity Self dual codes, Hamming code nd Interleaved codes. (Chap. 3 of	num distance ag capabilities, V Check Codes es, Reed-Muller	L1,L2,L3
	Module 3		
Encoding of cyclic cod Decoding of cyclic cod	ction, Generator and parity check les, Syndrome computing and e les, Error trapping Decoding, C codes.(Chap. 4 of Text2)	error detection,	L1,L2,L3
	Module 4		
	module +		

Implementation of Galois field arithmetic. (Chap. 6 (6.1,6.2,6.7) of Text
Primitive BCH codes over GF (q), Reed -Solomon codes. (Chap. 7 L1,L2,L3
(7.2,7.3) of Text 2)
Majority Logic decodable codes : One -step majority logic decoding,
Multiple-step majority logic. (Chap. 8 (8.1,8.4) of Text 2)
Mattiple-step majority logic. (enap. 6 (6.1,6.4) of rext 2) Module 5
Convolution codes: Encoding of convolutional codes: Systematic and
Nonsystematic Convolutional Codes, Feedforward encoder inverse, A
catastrophic encoder, Structural properties of convolutional codes:
state diagram, state table, state transition table, tree diagram, trellis L1,L2,L3
diagram.
Viterbi algorithm, Sequential decoding: Log Likelihood Metric for
Sequential Decoding. (11.1,11.2, 12.1,13.1 of Text 2)
Course Outcomes: After studying this course, students will be able to:
• Analyse a discrete memoryless channel, given the source and transition
probabilities.
• Apply the concept of modern linear algebra for the error control coding
technique.
 Construct and Implement efficient LBC, Cyclic codes etc encoder and
decoders.
 Apply decoding algorithms for efficient decoding of Block codes and
Convolutional codes.
Question paper pattern:
• Examination will be conducted for 100 marks with question paper
containing 10 full questions, each of 20 marks.
 Each full question can have a maximum of 4 sub questions.
• There will be 2 full questions from each module covering all the topics of the
module.
• Students will have to answer 5 full questions, selecting one full question
from each module.
• The total marks will be proportionally reduced to 60 marks as SEE marks is
60.
Text Books:
1. Simon Haykin, "Digital Communication systems", First edition, Wiley India
Private. Ltd, 2014. ISBN 978-81-265-4231-4
2. Shu Lin and Daniel J. Costello. Jr, "Error control coding", Pearson, Prentice
Hall, 2 nd edition, 2004.
Reference Books:
1. Blahut. R. E, "Theory and practice of error control codes", Addison Wesley,
1984.
 Salvatore Gravano, "Introduction to Error control coding", Oxford university
press, 2007.
 Bernard Sklar, "Digital Communications - Fundamentals and
Applications", 2nd Edition Pearson Education (Asia) Ptv. Ltd, 2001.

	DIGITAL CIRCUITS SIMULA [As per Choice Based Credit Syste		cheme]
	SEMESTER -	п	-
Laboratory Code	18ELDL26	CIE Marks	40
Number of Lecture Hours/Week	01Hr Tutorial (Instructions)+ 03 Hours Laboratory	SEE Marks	60
		Exam Hours	03
	CREDITS – 02		
Laboratory Expe	n and performance testing of digital e		
J			Revised
			Bloom's
			Taxonomy (RBT) Level
 a) Design of 4 b) Design of 1 c) Design of 1 d) Design of 1 e) Design of 1 e) Design of 1 g) Design of 1 h) Design of 5 	cal Programming using LabVIEW 4 bit Adders (CLA, CSA, CMA, Parallel add 3 binary Subtractors Encoder (8X3), Decoder(3X8) Multiplexer (8X1), and Demultiplexer (1X8) code converters & Comparator FF (SR, D, T, JK, and Master Slave with del registers using latches and flip-flops 8 bit Shift registers Asynchronous & Synchronous Counters)	L3

2. Develop Verilog Program for design and testing the following digital circuits (for 4/8 bits) using FPGA/CPLD. Use logic analyzer/Chipscope for the verification of results.	L2, L3, L4
(Note: Programming can be done using any complier. Down load the programs on FPGA/CPLD boards and performance testing may be done using pattern generator (32 channels and logic analyzer)/Chipscope pro. Implementing the above designs on Xilinx/Altera/Cypress/equivalent based FPGA/CPLD kits.)	
 a. Carry skip and carry look ahead adder b. BCD adder and subtractor c. Array Multiplication (signed and unsigned) d. Booth multiplication (radix-4) e. Magnitude comparator f. LFSR 	
g. Parity generatorh. Universal Shift Registeri. Sequence generation (11101 say) using Mealy/Moore FSM	
 Course outcomes: On the completion of this laboratory course, the stable to: Simulate the digital circuits using graphical programming tool Laby Build user friendly interfaces to interact with the digital circuits an outputs. Develop Verilog Programs for Digital Circuit design simulation and digital systems on FPGA/CPLD Testing and validation of digital systems using Logic analyzer/Chip 	VIEW. d to observe the implement
Conduct of Practical Examination:	

- 1. All laboratory experiments are to be included for practical examination.
- 2. For examination, one question each to be set from PART-A and PART-B.
- 3. Students are allowed to pick one experiment from the lot.
- 4. Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 5. Change of experiment is allowed only once and Marks allotted to the procedure part will be made zero.

Professional Elective 1

Course Code		CBCS) scheme]	
	SEMESTER – II 18ECS241	CIE Marks	40
Number of Lecture	04	SEE Marks	60
Hours/Week			
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	Credits – 04		1
 Understand t right type of s Understand of packetize to a Understand r wireless sens 	ourse, students will be able to the hardware details of different t sensor for various applications. conversion of sensor information a specific protocol for Transmissio radio standards and communicat or. the issues involved in synchronizat Modules	into digital data an on ion protocols to be	nd used for
	Module-1		Levels
Constraints (Chap	ors, Wireless Sensor Networks,	, Challenges and	L3
Control (2.2), Healt	ctural Health Monitoring (till th Care (2.3), Pipeline Monitorin		
	ctural Health Monitoring (till		
Control (2.2), Healt Agriculture (2.5) Module-2 Sensing Node Ar Processor (3.2) Su Interfaces (3.3), Pro Medium Access Access, Contentio Protocols – CSMA, 802.11, IEEE 802. Protocols in Sensor	ctural Health Monitoring (till th Care (2.3), Pipeline Monitoring chitecture: The Sensing Sub- absystem (3.2) (in brief only),	g (2.4), Precision system (3.1),The Communication on-Free Medium , Wireless MAC Invitation, IEEE teristics of MAC e MAC Protocols	L1, L2, L3
Control (2.2), Healt Agriculture (2.5) Module-2 Sensing Node Ar Processor (3.2) Su Interfaces (3.3), Pro Medium Access Access, Contentio Protocols – CSMA, 802.11, IEEE 802. Protocols in Sensor (6.4), Contention-B	ctural Health Monitoring (till th Care (2.3), Pipeline Monitoring chitecture: The Sensing Sub- absystem (3.2) (in brief only), totypes (3.4) Control : Overview - Contention on-Based Medium Access (6.1) MACA and MACAW, MACA By .15.4 and ZigBee (6.2), Charac r Networks (6.3), Contention-Fre	g (2.4), Precision system (3.1),The Communication on-Free Medium , Wireless MAC Invitation, IEEE teristics of MAC e MAC Protocols	

Power management : 8.1 Local Power Management Aspects, 8.2 Dynamic Power Management, 8.3 Conceptual Architecture. Time Synchronization : 9.1 Clocks and the Synchronization Problem, 9.2 Time Synchronization in Wireless Sensor Networks, 9.3 Basics of Time Synchronization,9.4 Time Synchronization Protocols till (9.4.5)	L1, L2, L3
Module-5	
Localization: 10.1 Overview, 10.2 Ranging Techniques, 10.3 Range-Based Localization, 10.4 Range-Free Localization, 10.5 Event-Driven Localization.	L1, L2, L3
Network Security : 11.1Fundamentals of Network Security, 11.2	
Challenges of Security in Wireless Sensor Networks, 11.3 Security Attacks in Sensor	
Course Outcomes: After studying this course, students will be abl	e to:
CO1: Explain the concepts of sensors and conversion to digitally form signal for transmission. CO2: Evaluate the capacity and degradation in performance of various	natted
MAC protocols in a transmission environment.	s wireless
CO3: Analyze schemes to transport sensor data to a server in a power	efficient
and time efficient manner.	emeient
CO4: Develop and evaluate the performance of a sensor network localization of sensor faults.	including
Question paper pattern:	
• Examination will be conducted for 100 marks with questi- containing 10 full questions, each of 20 marks.	on paper
• Each full question can have a maximum of 4 sub questions.	
• There will be 2 full questions from each module covering all the	topics of
the module.Students will have to answer 5 full questions, selecting one full	question
from each module.	question
• The total marks will be proportionally reduced to 60 marks as see 60.	e marks is
Text Book:	
 WaltenegusDargie and Christian Poellabauer, "Fundamentals Wireless Sensor Networks Theory and Practice", John Wiley & S Ltd.ISBN 978-0-470-99765-9, 2010. 	
Reference Book:	
 Ian F. Akyildiz and Mehmet Can Vuran "Wireless Sensor Networks", John Wiley & Sons Ltd. ISBN 978-0-470-03601-3 (H 2010. 	H/B),

<u>NANOELECTRONICS</u> [As per Choice Based Credit System (CBCS) scheme] SEMESTER – II			
Subject Code	18EVE242	CIE	40
Number of Lecture Hours/Week	04	SEE Marks	60
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	CREDITS -	04	

Course objectives: This course will enable students to:

- Enhance basic engineering science and technological knowledge of nanoelectronics
- Explain basics of top-down and bottom-up fabrication process, devices and systems.
- Describe technologies involved in modern day electronic devices.
- Appreciate the complexities in scaling down the electronic devices in the future.

Modules	(RBT) Level
Module -1	
Introduction: Overview of nanoscience and engineering. Development milestones in microfabrication and electronic industry. Moores' law and continued miniaturization, Classification of Nanostructures, Electronic properties of atoms and solids: Isolated atom, Bonding between atoms, Giant molecular solids, Free electron models and energy bands, crystalline solids, Periodicity of crystal lattices, Electronic conduction, effects of nanometer length scale, Fabrication methods: Top down processes, Bottom up processes methods for templating the growth of nanomaterials, ordering of nanosystems (Text 1).	L1, L2
Module -2	
Characterization: Classification, Microscopic techniques, Field ion microscopy, scanning probe techniques, diffraction techniques: bulk and surface diffraction techniques, spectroscopy techniques: photon, radiofrequency, electron, surface analysis and dept profiling: electron, mass, Ion beam, Reflectrometry, Techniques for property measurement: mechanical, electron, magnetic, thermal properties(Text1)	L1,L2,L 3
Module -3	1

uantum wells, quantum wires, quantum dots, super-lattices, band offsets, electronic density of states (Text1).	L1, L2, L3
Vanotubes, application of Carbon Nanotubes (Text 2).	
Module -4	
Fabrication techniques: requirements of ideal semiconductor, epitaxial growth of quantum wells, lithography and etching, cleaved-edge over growth, growth of vicinal substrates, strain induced dots and wires, electrostatically induced dots and wires, Quantum well width fluctuations, thermally annealed quantum wells, semiconductor nanocrystals, collidal quantum dots, self-assembly techniques. Physical processes: modulation doping, quantum hall effect, resonant tunneling, charging effects, ballistic carrier transport, Inter band absorption, intra band absorption, Light emission processes, phonon bottleneck, quantum confined stark effect, nonlinear effects, coherence and dephasing, characterization of semiconductor nanostructures: optical electrical and structural (Text1).	L1, L2, L3
Module -5	L
Methods of measuring properties: atomic, crystollography, microscopy, spectroscopy (Text 2). Applications: Injection lasers, quantum cascade lasers, single-photon sources, biological tagging, optical memories, coulomb blockade devices, photonic structures, QWIP's, NEMS, MEMS (Text1).	L1, L2, L3
Course outcomes: After studying this course, students will be able to:	
 Know the principles behind Nanoscience engineering and Nanoelectronic Apply the knowledge to prepare and characterize nanomaterials. Know the effect of particles size on mechanical, thermal, optical and electronic properties of nanomaterials. Design the process flow required to fabricate state of the art transistor te for analyze the requirements for new materials and device structure in the finologies. 	trical chnology.

Text Books:

- 1. Ed Robert Kelsall, Ian Hamley, Mark Geoghegan, "Nanoscale Science and Technology", John Wiley, 2007.
- 2. Charles P Poole, Jr, Frank J Owens, "Introduction to Nanotechnology", John Wiley, Copyright 2006, Reprint 2011.

Reference Book:

• Ed William A Goddard III, Donald W Brenner, Sergey E. Lyshevski, Gerald J Iafrate, "Hand Book of Nanoscience Engineering and Technology", CRC press, 2003.

	PTOGRAPHY AND NETWORK		
[As per	Choice Based credit System (SEMESTER – II	CBCS) Scheme]	
Subject Code	18ECS243	CIE Marks	40
Number of	04	SEE Marks	60
Lecture			
Hours/Week			
Total Number of Lecture Hours	50 (10 Hours Per Module)	Exam Hours	03
	CREDITS – 04		1
 Understand the Understand sor number generation Authenticate ar 	s: This course will enable studen basics of symmetric key and point ne basic mathematical concepts tors required for cryptography. Ind protect the encrypted data. Ige about Email, IP and Web sec	ublic key cryptog and pseudoran	
Modules			RBT Level
	Module 1		
	inology, Steganography, substi	-	L1,L2,L3
-	ciphers, Simple XOR, One-Time		
	ns (Text 2: Chapter 1: Section 1	,	
	ERS: Traditional Block Cipher	-	
	d (DES), The AES Cipher. (Tex	t 1: Chapter 2:	
Section2.1, 2.2, Ch			
	Module 2		1
Introduction to mod	lular arithmetic, Prime Number	s, Fermat's	L1,L2,L3
and Euler's theorem	n, primality testing, Chinese Rei	mainder	
theorem, discrete lo 5)	ogarithm. (Text 1: Chapter 7: Se	ction 1, 2, 3, 4,	
	-Key Cryptosystems, The RSA a	lgorithm. Diffie	
	ange, Elliptic Curve Arithmetic		
	1: Chapter 8, Chapter 9: Sectio		
	Module 3	,,,,	1
Pseudo-Random-S	equence Generators and St	ream Cinhers	L1,L2, L3
	1 Generators, Linear Feedback	-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	sis of stream ciphers, Stream		
	es XPD/KPD, Nanoteq, Ramb		
	,		
	Algorithm M, PKZIP (Text 2: Ch		
0	Module 4		111010
MD5, Secure Has using symmetric b Choosing a one-w Codes. Digital Sign Scheme (Text 2: Ch	nctions: Background, Snefru, h Algorithm [SHA],One way block algorithms, Using public bray hash functions, Message ature Algorithm, Discrete Logan hapter 18: Section 18.1 to 18.5, 20: Section 20.1, 20.4)	hash functions key algorithms, Authentication rithm Signature	L1,L2,L3

Module 5	
E-mail Security: Pretty Good Privacy-S/MIME (Text 1: Chapter	L1,L2, L
17: Section 17.1, 17.2).	
IP Security: IP Security Overview, IP Security Policy,	
Encapsulation Security Payload (ESP), Combining security	
Associations. (Text 1: Chapter 18: Section 18.1 to 18.4).	
Web Security: Web Security Considerations, SSL (Text 1:Chapter 15: Section 15.1, 15.2).	
Course Outcomes: After studying this course, students will be able	to:
• Use basic cryptographic algorithms to encrypt the data.	
 Generate some pseudorandom numbers required for cryptographic applications. 	ic
• Provide authentication and protection for encrypted data.	
Question paper pattern:	
• Examination will be conducted for 100 marks with question containing 10 full questions, each of 20 marks.	n paper
 Each full question can have a maximum of 4 sub questions. 	
 There will be 2 full questions from each module covering all the 	e tonice
of the module.	c topics
• Students will have to answer 5 full questions, selecting o	ne full
question from each module.	nic iun
 The total marks will be proportionally reduced to 60 marks as SI 	чr
marks is 60.	
Text Books:	
1 William Stallinga "Omntagenably and Natural's Sagurity Dringi	nlag and
 William Stallings, "Cryptography and Network Security Princip Practice", Pearson Education Inc., 6th Edition, 2014, ISBN: 978 325-1877-3 	
2. Bruce Schneier, "Applied Cryptography Protocols, Algorithms,	and
Source code in C", Wiley Publications, 2 nd Edition, ISBN: 9971 348-X	
Reference Books:	
 Cryptography and Network Security, Behrouz A. Forouzar 2007. 	n, TMH,
2. Cryptography and Network Security, Atul Kahate, TMH, 2003.	

Professional Elective 2

<u>AUTOMOTIVE ELECTRONICS</u> [As per Choice Based credit System (CBCS) Scheme				
Subject Code Number of	18EIE251 04	CIE Marks SEE Marks	40 60	
Lecture	04	SEE Marks	00	
Hours/Week				
Total Number of	50 (10 Hours per	Exam Hours	03	
Lecture Hours	Module)			
	CREDITS – 04			
•	s: This course will enable s ⁻			
	e complete dynamics of auto			
0	plement the electronics that			
	s by way of unprecedented	safety, add-on fe	eatures	, and
comforts.				DDA
Modules				RBT
				Level
Module 1		1 4 0		
	lamentals, the Systems A	pproach to Con	trol	
and Instrumentation:				L1,L2
Use Of Electronics In The Automobile, Antilock Brake Systems, (ABS), Electronic steering control, Power steering, Traction				
control, Electronically controlled suspension. (Chap.1 and				
2 of Text)				
Module 2	mantation Control Same	ling Magaurom	ont	
Automotive instrumentation Control: Sampling, Measurement and signal conversion of various parameters. (Chap. 4 of Text)				L1,L2, L3
Module 3				1, LZ, LC
	tronic Engine control:			
	Climate controls, Motiva	tion for Electr	onic	
0	oncept of An Electronic Eng			
-	eral Terms, Definition of I			
	fuel control system, Engin			
-	n, Sensors and Actuator	-		
-	ors, air flow rate sensor, In			L1,L2,L3
	Engine crankshaft angul			, , -
	e control actuators, Digi	-		
-	or, Timing sensor for ignition	-		
	control systems, Safety		erior	
0	itertainment systems. (Chaj		ct)	
Module 4				

Vehicle Motion Control and Automotive diagnostics: Cruise	L1,L2, L3
control system, Digital cruise control, Timing light, Engine	
analyzer, On-board and off-board diagnostics, Expert systems.	
Stepper motor-based actuator, Cruise control electronics,	
Vacuum - antilock braking system, Electronic suspension ystem	
Electronic steering control, Computer-based instrumentation	
system, Sampling and Input\output signal conversion, Fuel	
quantity measurement, Coolant temperature measurement, Oil	
pressure measurement, Vehicle speed measurement, Display	
devices, Trip-Information-Computer, Occupant protection	
systems. (Chap. 8 and 10 of Text)	
M. 4.1. F	<u> </u>
Module 5	
Future automotive electronic systems:	

Alternative Fuel Engines, Collision Wide Range Air/Fuel Sensor, Alternative Engine, Low Tire Pressure Warning System, Collision avoidance Radar Warning Systems, Low Tire Pressure Warning System, Radio Navigation, Advance Driver information System. Alternative-Fuel Engines , Transmission Control , Collision Avoidance Radar Warning System, Low Tire Pressure Warning System, Speech Synthesis Multiplexing in Automobiles, Control Signal Multiplexing, Navigation Sensors, Radio Navigation, Sign post Navigation , Dead Reckoning Navigation Future Technology, Voice Recognition Cell Phone Dialing Advanced Driver information System, Automatic Driving Control. (Chap. 11 of Text)

Course Outcomes: After studying this course, students will be able to:

- Implement various control requirements in the automotive system.
- Comprehend dashboard electronics and engine system electronics.
- Identify various physical parameters that are to be sensed and monitored for maintaining the stability of the vehicle under dynamic conditions.
- Understand and implement the controls and actuator system pertaining to the comfort and safety of commuters.
- Design sensor network for mechanical fault diagnostics in an automotive vehicle.

Question paper pattern:

- Examination will be conducted for 100 marks with question paper containing 10 full questions, each of 20 marks.
- Each full question can have a maximum of 4 sub questions.
- There will be 2 full questions from each module covering all the topics of the module.
- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Book:

William B. Ribbens , "Understanding Automotive Electronics", SAMS/Elsevier publishing, 6th Edition, 1997.

Reference Book:

Robert Bosch Gmbh, "Automotive Electrics and Automotive Electronics-Systems and Components, Networking and Hybrid Drive", Springer Vieweg, 5th Edition, 2007.

[As	<u>SoC DESI</u> per Choice Based credit SEMESTER	System (CBCS	8) Scheme
Subject Code	18EVE252	CIE Marks	40
Number of Lecture Hours/Week	04	SEE marks	60
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	CREDITS	- 04	

Course Objectives: This course will enable students to:

- Describe the ARM processor architecture and user-level assembly language programming
- Appreciate what a high-level language (in this case, C) really needs and how those needs are met by the ARM instruction set.
- raises the issues involved in debugging systems which use embedded
- processor cores and in the production testing of board-level systems.
- Learn the concept of memory hierarchy, discussing the principles
- of memory management and caches.

memory interface, The Advanced Microcontroller Bus Architecture	
(AMBA), The ARM reference peripheral specification, Hardware	
system prototyping tools, The ARMulator, The JTAG boundary	
scan test architecture, The ARM debug architecture, Embedded	
Trace, Signal processing support.	
Module 3	
ARM Processor Cores: ARM7TDMI, ARM8,ARM9TDMI,	
ARM10TDMI ,Discussion ,Example and exercises.	
Memory Hierarchy: Memory size and speed, On-chip memory,	
Caches, Cache design - an example, Memory management,	
Examples and exercises.	
Module 4	
Architectural Support for Operating Systems: An introduction	L1,L2
to operating systems, The ARM system control coprocessor, CP15	,
protection unit registers, ARM protection unit,CP15 MMU	
registers, ARM MMU architecture, Synchronization, Context	
switching, Input/ Output, Example and exercises.	
ARM CPU Cores: The ARM710T, ARM720T and	
ARM740T, The ARM810,The Strong ARM SA-110,The	
ARM920T and ARM940T,The ARM946E-S and ARM966E-S,The	
ARM1020E,Discussion,Example and exercises.	
Module 5	1
Embedded ARM Applications: The VLSI Ruby II Advanced	L1,L2,L3
Communication Processor, The VLSI ISDN Subscriber Processor,	
The One C [™] VWS22100 GSM chip, The Ericsson-VLSI Bluetooth	
Baseband Controller, The ARM7500 and ARM7500FE, The	
ARM7100 364, The SA-1100 368, Examples and exercises.	
The AMULET Asynchronous ARM Processors: Self-timed design	
375,AMULET1 377,AMULET2 381,AMULET2e 384,AMULET3	
387, The DRACO telecommunications controller 390, A self-timed	
future? 396, Example and exercises.	
Course Outcomes: After studying this course, students will be able	a to:
1. Apply the 3- and 5-stage pipeline ARM processor cores and an	laryse the
implementation issues.	Q (
2. Use the concepts and methodologies employed in designing a	-
on-chip (SoC) based around a microprocessor core and in desi	gning the
microprocessor core itself.	
3. Understand how SoCs and microprocessors are designed and us	sed, and
why a modern processor is designed the way that it is.	
4. Use integrated ARM CPU cores (including StrongARM) that in	corporate
full support for memory management.	
5. Analyze the requirements of a modern operating system and use	e the ARM
architecture to address the same.	
Question paper pattern:	
• Examination will be conducted for 100 marks with question	n naner
-	m paper
containing 10 full questions, each of 20 marks.	
• Each full question can have a maximum of 4 sub questions.	
• There will be 2 full questions from each module covering all t	he topics
of the module.	

- Students will have to answer 5 full questions, selecting one full question from each module.
- The total marks will be proportionally reduced to 60 marks as SEE marks is 60.

Text Book:

• Steve Furber, "ARM System-On-Chip Architecture", Addison Wesley, 2nd edition.

References Books:

- 1. Joseph Yiu, "The Definitive Guide to the ARM Cortex-M3", 2nd edn, Newnes, (Elsevier), 2010.
- 2. Sudeep Pasricha and Nikil Dutt, "On-Chip Communication Architectures: System on Chip Interconnect", Morgan Kaufmann, Publishers © 2008.
- 3. Michael Keating, Pierre Bricaud, "Reuse Methodology Manual for System on Chip designs", Kluwer Accademic Publishers, 2nd edition, 2008.

[As per	~	CHANICAL SYSTE		
	Choice Based cred SEMES1	• • •	Scheme	
Subject Code	18ELD253	CIE Marks	40	
Number of	04	SEE Marks	60	
Lecture				
Hours/Week				
Total Number of	50	Exam Hours	03	
Lecture Hours	(10 Hours per Mod			
	CREDI			
Course Objectives	s: This course will en	able students to:		
• Know an overvi	ew of microsystems,	their fabrication an	d applicat	ion
areas.			a appiloa	
	principles of several 1	MEMS devices.		
	natical and analytica		devices	
-	to fabricate MEMS de			
• Expose the stud	lents to various appl	ication areas where	MEMS de	evices
can be used.				
Modules				RBT
				Level
Module 1	<u> </u>			11 10
	S and Microsystems			L1, L2
	cosystem, Typical		osystems	
Products, Evolut	ion of Microtabric		~	
Microelectronico				
	Multidisciplinary	Nature of Micro	ms and psystems,	
		Nature of Micro		
Miniaturization. Ap	Multidisciplinary	Nature of Micro		
Miniaturization. Ap	Multidisciplinary oplications and Mark	Nature of Micro		L1. L2
Miniaturization. Ap Module 2 Working Principle	Multidisciplinary oplications and Mark es of Microsystems:	Nature of Micro	osystems,	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros	Nature of Micro actuation, MEMS	osystems,	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi	Multidisciplinary oplications and Mark es of Microsystems:	Nature of Micro actuation, MEMS	osystems,	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros	Nature of Micro cets. actuation, MEMS Microfluidics.	osystems,	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros icroaccelerometers, M	Nature of Micro cets. actuation, MEMS Microfluidics.	osystems,	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication:	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros icroaccelerometers, M	Nature of Micro actuation, MEMS Microfluidics.	osystems,	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros croaccelerometers, M hce for Microsystem	Nature of Micro actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza	osystems,	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros croaccelerometers, M nce for Microsystem nic Structure of Matte	Nature of Micro actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza nolecular Forces, D	systems, with tion,	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of Semiconductors,	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros icroaccelerometers, M nce for Microsystem nic Structure of Matter of Matter and Inter-n	Nature of Micro actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza nolecular Forces, D	systems, with tion, oping of	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros icroaccelerometers, M nce for Microsystem nic Structure of Matter of Matter and Inter-n	Nature of Micro actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza nolecular Forces, D	systems, with tion, oping of	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of Semiconductors, Electrochemistry. Module 3	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros icroaccelerometers, M nce for Microsystem nic Structure of Matter of Matter and Inter-n	Nature of Micro actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza nolecular Forces, D rocess, Plasma	systems, with tion, oping of	L1, L2
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of Semiconductors, Electrochemistry. Module 3 Engineering Mech	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros icroaccelerometers, M nce for Microsystem nic Structure of Matter of Matter and Inter-n The Diffusion Pr	Nature of Micro actuation, MEMS Aicrofluidics. As Design and ers, Ions and Ioniza nolecular Forces, D rocess, Plasma	systems, with tion, oping of Physics,	
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of Semiconductors, Electrochemistry. Module 3 Engineering Mech Introduction, Stati	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros acroaccelerometers, M nce for Microsystem nic Structure of Matter of Matter and Inter-n The Diffusion Pr	Nature of Micro tets. actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza nolecular Forces, D rocess, Plasma tems Design: ates, Mechanical Vi	systems, with tion, oping of Physics,	
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of Semiconductors, Electrochemistry. Module 3 Engineering Mech Introduction, Stati Thermomechanics	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros acroaccelerometers, M nce for Microsystem nic Structure of Matter of Matter and Inter-n The Diffusion Pr nanics for Microsyst c Bending of Thin Pla	Nature of Micro tets. actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza nolecular Forces, D rocess, Plasma tems Design: ates, Mechanical Vi cs, Thin Film Me	systems, with tion, oping of Physics,	
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of Semiconductors, Electrochemistry. Module 3 Engineering Mech Introduction, Stati Thermomechanics	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros icroaccelerometers, M nce for Microsystem nic Structure of Matter of Matter and Inter-n The Diffusion Pr nanics for Microsyst c Bending of Thin Pla , Fracture Mechanic	Nature of Micro tets. actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza nolecular Forces, D rocess, Plasma tems Design: ates, Mechanical Vi cs, Thin Film Me	systems, with tion, oping of Physics,	
Miniaturization. Ap Module 2 Working Principle Introduction, Mi Microactuators, Mi Engineering Scien Fabrication: Introduction, Atom Molecular Theory of Semiconductors, Electrochemistry. Module 3 Engineering Mech Introduction, Stati Thermomechanics; Overview on Finite	Multidisciplinary oplications and Mark es of Microsystems: crosensors, Micros acroaccelerometers, M nce for Microsystem nic Structure of Matter of Matter and Inter-n The Diffusion Pr nanics for Microsyst c Bending of Thin Pla , Fracture Mechanic Element Stress Anal	Nature of Micro tets. actuation, MEMS Microfluidics. Is Design and ers, Ions and Ioniza nolecular Forces, D rocess, Plasma tems Design: ates, Mechanical Vi cs, Thin Film Me	systems, with tion, oping of Physics,	

Dynamics, Scaling in Electrostatic Forces, Scaling of	
Electromagnetic Forces, Scaling in Electricity, Scaling in Fluid	
Mechanics, Scaling in Heat Transfer.	
Module 5	
Overview of Micro-manufacturing:	L1,L2,L
Introduction, Bulk Micro-manufacturing, Surface	,_,_
Micromachining, The LIGA Process, Summary on Micro-	
manufacturing.	
Microsystem Design:	
Introduction, Design Considerations, Process Design, Mechanical	
Design, Using Finite Element Method.	
Course Outcomes: After studying this course, students will be able	e to:
• Understand the technologies related to Micro Electro Mechanica	l
Systems.	
Describe the design and fabrication processes involved with MEN	ИS
devices.	
Analyse the MEMS devices and develop suitable mathematical m	odels
Understand the various application areas for MEMS devices	
Question paper pattern:	
• Examination will be conducted for 100 marks with question	n paper
containing 10 full questions, each of 20 marks.	
• Each full question can have a maximum of 4 sub questions.	
• There will be 2 full questions from each module covering all the	ne topics
of the module.	0.11
• Students will have to answer 5 full questions, selecting	one full
question from each module.	
• The total marks will be proportionally reduced to 60 marks as S marks is 60.	SEE
marks is 60.	
Text Book:	
Tai-Ran Hsu, MEMS and Micro systems: Design, Manufacture and	
Nanoscale Engineering, 2 nd Ed, John Wiley & Sons, 2008. ISBN: 97	8-0-470-
08301-7	0 0 110
00001-7	
Reference Books:	
1. Hans H. Gatzen, Volker Saile, JurgLeuthold, Micro and Nano	
Fabrication: Tools and Processes, Springer, 2015.	

2. Dilip Kumar Bhattacharya, Brajesh Kumar Kaushik, Micro electromechanical Systems (MEMS), Cenage Learning.

<u>M.Tech 2018-Digital Electronics/ Electronics -</u> <u>THIRD SEMESTER SYLLABUS</u>

Course Code	18ELD31	CIA Marks	40
Number of	04	SEE Marks	60
Lecture			
Hours/Week			
Total Number of Lecture	50 (10 Hours per Module)	Exam Hours	03
Hours		Hours	
110415	Credits – 04		
Course objectives	: This course will enable stud	ents to	
•	he need for optimization and dim		nization
for digital cire	_	-	
• Understand b	pasic optimization techniques use	ed in circuits de	sign
Understand a	advanced tools and techniques in	digital systems	design
including Ha	rdware Modeling and Compilation	n Techniques.	-
• Explain detai	ls of Logic-Level synthesis and op	otimization tech	niques
for combinati	onal and sequential circuits.		
• Explain the c	oncept of scheduling and resourc	e binding for	
optimization.			
	Modules		RBT
			Levels
	Module-1		
	Synthesis and optimization	-	
	circuits, Computer aided Syn	ithesis and	т 1
Optimization.	ng : HDLs for Synthesis, Abstr	act models	L1, L2, L3
	Behavioral Optimization.	act models,	12, 10
(Text1: Topics from	-		
(· - <u>1</u>	- /		
	Module-2	1	
Graph theory for	Module-2 r CAD for VLSI: Graphs, Co	ombinatorial	L1, L2
			L1, L2 L3
Optimization, O Algorithms, Boolea	r CAD for VLSI : Graphs, Co Graph Optimization prob an Algebra and Applications.	lems and	-
Optimization, O Algorithms, Boolea Architectural Sy	r CAD for VLSI: Graphs, Co Graph Optimization prob an Algebra and Applications. Inthesis and Optimization:	lems and Fundamental	-
Optimization, O Algorithms, Boolea Architectural Syn Architectural Syn	r CAD for VLSI : Graphs, Co Graph Optimization prob an Algebra and Applications. nthesis and Optimization : I thesis problems, Area and	lems and Fundamental Performance	-
Optimization, O Algorithms, Boolea Architectural Syn Architectural Syn Estimation, Stra	r CAD for VLSI : Graphs, Co Graph Optimization prob an Algebra and Applications. nthesis and Optimization : In thesis problems, Area and tegies for Architectural (lems and Fundamental Performance Optimization,	-
Optimization, O Algorithms, Boolea Architectural Syn Architectural Syn Estimation, Stra Datapath Synthes	r CAD for VLSI : Graphs, Co Graph Optimization prob an Algebra and Applications. nthesis and Optimization : I thesis problems, Area and	lems and Fundamental Performance Optimization,	-
Optimization, O Algorithms, Boolea Architectural Syn Architectural Syn Estimation, Stra	CAD for VLSI : Graphs, Co Graph Optimization prob an Algebra and Applications. Inthesis and Optimization: If thesis problems, Area and tegies for Architectural (bis, Control Path Synthesis.(1	lems and Fundamental Performance Optimization,	-
Optimization, O Algorithms, Boolea Architectural Syn Architectural Syn Estimation, Stra Datapath Synthes From Chap. 2,4)	r CAD for VLSI: Graphs, Co Graph Optimization prob an Algebra and Applications. Inthesis and Optimization: In thesis problems, Area and tegies for Architectural (bis, Control Path Synthesis.(The Module-3	lems and Fundamental Performance Optimization, Yext1: Topics	-
Optimization, O Algorithms, Boolea Architectural Syn Architectural Syn Estimation, Stra Datapath Synthes From Chap. 2,4)	r CAD for VLSI: Graphs, Co Graph Optimization prob an Algebra and Applications. Inthesis and Optimization: If thesis problems, Area and tegies for Architectural (bis, Control Path Synthesis.(If Module-3 ational Logic Optimization: If	lems and Fundamental Performance Optimization, Yext1: Topics Introduction,	L3
Optimization, O Algorithms, Boolea Architectural Syn Architectural Syn Estimation, Stra Datapath Synthes From Chap. 2,4) Two level Combin Logic Optimization	r CAD for VLSI: Graphs, Co Graph Optimization prob an Algebra and Applications. Inthesis and Optimization: In thesis problems, Area and tegies for Architectural (bis, Control Path Synthesis.(The Module-3	lems and Fundamental Performance Optimization, Pext1: Topics Introduction, Logic Covers,	-

Introduction Models and Transformations for Combinational	
Introduction, Models and Transformations for Combinational	
Networks, The Algebraic Model, The Boolean Model. (Text1:	
Chap. 7, 8)	
Module-4	
Sequential Logic Optimization:	
Introduction, Sequential Logic Optimization using State	L1,
based Models, Sequential Logic Optimization using Network	L2, L3
Models, Implicit FSM Traversal Methods, Testability	
concerns for Synchronous Circuits. (Text 1: Chap. 9)	
Module-5	
Scheduling Algorithms: Introduction, A Model for	
Scheduling problems, Scheduling with Resource	L1,
Constraints, Scheduling without Resource Constraints,	L2, L3
Scheduling Algorithms for Extended Sequencing Models,	
Scheduling Pipelined Circuits.	
Resource Sharing and Binding: Sharing and Binding for	
Resource dominated circuits, Sharing and Binding for	
General Circuits, Concurrent Binding and Scheduling.	
(Text1: Chap. 5,6)	
Course Outcomes: After studying this course, students will be	able to:
• Understand the process of synthesis and optimization in a t	
approach for digital circuits models using HDLs.	op down
 Understand the terminologies of graph theory and its algorit 	hms to
optimize a Boolean equation.	
 Apply different two level and multilevel optimization algorith 	ms for
combinational circuits	1113 101
 Apply the different sequential circuit optimization methods u 	ising
state models and network models.	Joing
 Apply different scheduling algorithms with resource binding 	and
without resource binding for pipelined sequential circuits ar	
extended sequencing models.	iu
 Question paper pattern: Examination will be conducted for 100 marks with question 	
 Examination will be conducted for 100 marks with question containing 10 full questions, each of 20 marks. 	on paper
 Each full question can have a maximum of 4 sub questions. 	
 There will be 2 full questions from each module covering all the 	topics of
the module.	topics of
• Students will have to answer 5 full questions, selecting one full	question
from each module.	44000000
• The total marks will be proportionally reduced to 60 marks	as SEE
marks is 60.	
Text Book:	
Giovanni De Micheli, "Synthesis and Optimization of Digital Circu	uits". Tata
McGraw-Hill, 2003.ISBN: 9780070582781	, <u>-</u>
Reference Books:	Sustama
Edwars M.D., Automatic Logic synthesis Techniques for Digital	Systems,
Macmillan New Electronic Series, 1992.	

Professional Elective 3

[As per	<u>Advances in Image</u> Choice Based credit S SEMESTER	System (CBCS) S	Scheme
Subject Code	18ECS321	CIE Marks	40
Number of	04	SEE	60
Lecture		marks	
Hours/Week			
Total Number of	50 (10 Hours Per	Exam	03
Lecture Hours	Module)	Hours	
	CREDITS -	- 04	

Course Objectives: This course will enable students to:

1. Acquire fundamental knowledge in understanding the representation of the digital image and its properties

2. Equip with some pre-processing techniques required to enhance the image for further analysis purpose.

3. Select the region of interest in the image using segmentation techniques.

4. Represent the image based on its shape and edge information.

5. Describe the objects present in the image based on its properties and structure.

Modules	RBT Level
Module 1	
The image, its representations and properties: Image representations a few concepts, Image digitization, Digital image properties, Color images.	L1
Module 2	
Image Pre-processing: Pixel brightness transformations, geometric transformations, local pre-processing.	L1, L2
Module 3	
Segmentation: Thresholding; Edge-based segmentation – Edge image thresholding, Edge relaxation, Border tracing, Hough transforms; Region – based segmentation – Region merging, Region splitting, Splitting and merging, Watershed segmentation, Region growing post-processing.	L1, L2, L3
Module 4	
Shape representation and description: Region identification; Contour-based shape representation and description – Chain codes, Simple geometric border representation, Fourier transforms of boundaries, Boundary description using segment sequences, B-spline representation; Region-based shape representation and description – Simple scalar region descriptors, Moments, Convex hull.	L1, L2, L3
Module 5	
Mathematical Morphology: Basic morphological concepts, Four morphological principles, Binary dilation and erosion, Skeletons	L1, L2, L3

and object marking, Morphological segmentations and
watersheds.
Course Outcomes: After studying this course, students will be able to:
1.Understand the representation of the digital image and its properties
2.Apply pre-processing techniques required to enhance the image for its
further analysis.
3.Use segmentation techniques to select the region of interest in the image
for analysis
4.Represent the image based on its shape and edge information.
5.Describe the objects present in the image based on its properties and
structure.
6.Use morphological operations to simplify images, and quantify and
preserve the main shape characteristics of the objects.
Question paper pattern:
• Examination will be conducted for 100 marks with question paper
containing 10 full questions, each of 20 marks.
• Each full question can have a maximum of 4 sub questions.
• There will be 2 full questions from each module covering all the topics
of the module.
• Students will have to answer 5 full questions, selecting one full
question from each module.
• The total marks will be proportionally reduced to 60 marks as SEE
marks is 60.
Text Books:
1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis

 Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision", Cengage Learning, 2013, ISBN: 978-81-315-1883-0

Reference Books:

- 1. Geoff Doughertry, Digital Image Processing for Medical Applications, Cambridge university Press, 2010
- 2. S.Jayaraman, S Esakkirajan, T.Veerakumar, Digital Image Processing, Tata McGraw Hill, 2011.

[A s :	<u>CMOS RF Circ</u> per Choice Based credit	System (CBC	S) Schen	ne
Subject Code	SEMESTE 18EVE322	R – III IA Marks	4(0
Number of Lecture Hours/Week	04	Exam marks	60)
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03	3
	CREDITS ctives: This course will e			
 Learn basic effects of no Appreciate of standards m Deal with tri designs, the Understand 	concepts in RF and micro nlinearity and noise. communication system, m ecessary for RF circuit de ansceiver architecture, va ir merits and demerits the design of RF building Mixers, Oscillators and PI	owave design e nultiple access esign. arious receiver g blocks such a	emphasiz and wire and tran	eless Ismitter oise
	Modules 			RBT Level
Concepts: A wireless General consideration dynamic range, D parameters, Analysi	s of nonlinear dynamic s	enging, The big , Noise, Sensiti sformation. S	picture. ivity and cattering	L1,L2,L3
gains and distortio	Modul	e 2		
modulation, digital non-coherent detec access techniques, phase shift keying.	Concepts: General concept modulation, spectral re-gettion, Mobile RF community Wireless standards, Appe	ots, analog growth, cohere ications, Multi	ple	L1,L2,L3
Module 3	nitecture: General con	siderations	Deceivor	L1,L2,L3
architecture, Trans two-step transmitter reject, Direct IF and	smitter architectures, rs, RF testing for heterod sub sampled receivers.	Direct convers	sion and	64,24,14
input matching, LN. load, common-source	rs and Mixers: General con A topologies: common-sour ce stage with resistive fea- sive down conversion miz- mentation	rce stage with i edback. Mixers	nductive -General	L1,L2,L3

Module 5	
VCO and PLLs - Oscillators- Basic topologies VCO and definition of phase noise, Noise power and trade off. Resonator VCO designs, Quadrature and single sideband generators. Radio frequency Synthesizers- PLLS, Various RF synthesizer architectures and frequency dividers, Power Amplifier design	L1,L2,L3
 Course Outcomes: After studying this course, students will be able 1. Analyse the effect of nonlinearity and noise in RF and micro design. 2. Exemplify the approaches taken in actual RF products. 3. Minimize the number of off-chip components required to desimixers, Low-Noise Amplifiers, VCO and PLLs. 4. Explain various receivers and transmitter topologies with the merits and drawbacks. 5. Demonstrate how the system requirements define the paramethe circuits and the impact on the performance 	wave sign eir
 Question paper pattern: The question paper will have 10 full questions carrying equates Each full question consists of 16 marks with a maximum of questions. There will be 2 full questions from each module covering all topics of the module The students will have to answer 5 full questions, selecting question from each module. 	four sub
Text Book : B. Razavi, " RF Microelectronics ", PHI, second edition.	
 Reference Books: 1. R. Jacob Baker, H.W. Li, D.E. Boyce "CMOS Circuit Design and Simulation", PHI 1998. 2. Thomas H. Lee "Design of CMOS RF Integrated Circuits" University press 1998. 3. Y.P. Tsividis, "Mixed Analog and Digital Devices and Tech TMH 1996 	Cambridge

	ation System Design usir		
[As per Choice Based Credit System (CBCS) scheme] SEMESTER – III			
Course Code	18ESP323	CIE Marks	40
Number of Lecture Hours/Week	04	SEE Marks	60
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	Credits – 04		I
Course Objectives	This course will enable stu	udents to:	
 particularly suit Understand Sot filters and the F Discuss modul methods such suppressed-cart modulation (SS) 	ators and demodulators for a as amplitude modulation rier amplitude modulation (B), and frequency modulation communication methods lead	as well as FIR and classical analog ion (AM), doub DSBSC-AM), singl a (FM).	l IIR digital modulation le-sideband le sideband
	Modules		RB1 Leve
	Module 1		
and frequency resp implement FIR filters assembly functions optimizer. IIR filters	course : Digital filters, Discr onses, FIR filters - Using in C and using DSP hardwar , Linear assembly code - realization and implementa : DTFT window function, D	circular buffers re, Interfacing C a and the assemb tion, FFT and pow	to nd L1,L bly ver
	Module 2		
generation and demo detection and squar	scheme: Amplitude Modulation of AM, Spectrum of e law detection. Hilbert tran plementation of amplitude	AM signal. Envelo sform and compl	pe L1,L
DSBSC: Theory a demodulation usin Implementation of DS SSB: Theory, SSB	generation of DSBSC, I g coherent detection a SBSC using DSP hardware. modulators, Coherent demo ntation using DSP hardware.	nd Costas loc odulator, Frequen	-
	Module 3		
bandwidth, FM de Implementation usin	ion: Theory, Single tone FM, modulation, Discrimination	and PLL metl	nods, L1,L

data scramblers. RS-232C protocol and BER tester: The protocol, error	
rate for binary signaling on the Gaussian noise channels, Three bit error	
rate tester and implementation.	
Module 4	
PAM and QAM: PAM theory, baseband pulse shaping and ISI,	
Implementation of transmit filter and interpolation filter bank. Simulation and theoretical exercises for PAM, Hardware exercises for PAM.	L2,L3
QAM fundamentals: Basic QAM transmitter, 2 constellation examples, QAM structures using passband shaping filters, Ideal QAM demodulation, QAM experiment. QAM receivers-Clock recovery and other frontend sub-systems. Equalizers and carrier recovery systems.	
Module 5	
Experiment for QAM receiver frontend. Adaptive equalizer, Phase splitting, Fractionally spaced equalizer. Decision directed carrier tracking, Blind equalization, Complex cross coupled equalizer and carrier tracking experiment.	L2,L3
Echo cancellation for full duplex modems: Multicarrier modulation, ADSL architecture, Components of simplified ADSL transmitter, A simplified ADSL receiver, Implementing simple ADSL Transmitter and Receiver.	
Course outcomes: After studying this course, students will be able to:	
 Implement modulators and demodulators for AM,DSBSC-AM,SSB ar Design digital communication methods leading to the implementation line communication system. 	
Question paper pattern:	
 The question paper will have 10 full questions carrying equal m Each full question consists of 16 marks with a maximum of fou questions. 	
• There will be 2 full questions from each module covering all the of the module	_
• The students will have to answer 5 full questions, selecting one question from each module.	full
Text Book:	
 Tretter, Steven A., "Communication System Design Using DSP Alg With Laboratory Experiments for the TMS320C6713[™] DSK", Spring 2008. 	
Reference Books:	
	lighter
 Robert. O. Cristi, "Modern Digital signal processing", Cengage Pul India, 2003. S. K. Mitra, "Digital signal processing: A computer based approact 	
edition, TMH, India, 2007.	, 010
3. E.C. Ifeachor, and B. W. Jarvis, "Digital signal processing: A Pract	itioner'

Professional Elective 4

	VLSI Design for Sig	gnal Processing	g	
[As]	per Choice Based credit SEMESTE	• •	S) Schen	ne
Subject Code	18EVE331	CIE	40)
Number of	04	Marks SEE	60)
Lecture Hours/Week		marks		
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03	3
	CREDITS			
Learn severa used to desiDeal with hi	ctives: This course will e al high-level architectura gn families of architectur gh-level algorithm transf pok-ahead and relaxed lo	l transformatio res for a given a formations sucl	ons that c algorithm	
Modules				RI T Level
Module 1	P Systems : Typical DSP Alg			L1, L2
of DSP Algorithms. Iteration Bounds: D	s and Scaled CMOS Techno pata flow graph Representat prithms for Computing Itera data flow graphs.	tions, loop bound	d and	
parallel processing, I	allel Processing: pipelinin Pipelining and parallel proc n and Properties, Solving s.	essing for low po	ower.	L1,L2,L3
Module 3				
path, Unfolding and Folding: Folding Tr	ithm for Unfolding, Propert Retiming, Application of Ur cansformation, Register M on in Folded Architecture	nfolding. Iinimization Tec	hniques,	L1, <u>L2,L</u> 3
Module 4				
systolic array, Se	re Design: systolic array delection of Scheduling D systolic Array Design, S	Vector, Matri	ix-Matrix	L1,L2,L3

Pipelined and Parallel Recursive and Adaptive Filter: Pipeline L1,L2,L3				
Interleaving in Digital Filter, first order IIR digital Filter, Higher order				
IIR digital Filter, parallel processing for IIR filter, Combined pipelining				
and parallel processing for IIR Filter, Low power IIR Filter Design Using				
Pipelining and parallel processing, pipelined adaptive digital filter.				
Course Outcomes: After studying this course, students will be able to:				
 Illustrate the use of various DSP algorithms and addresses their 				
representation using block diagrams, signal flow graphs and data-flow				
graphs				
• Use pipelining and parallel processing in design of high-speed /low-power				
applications				
 Apply unfolding in the design of parallel architecture 				
 Evaluate the use of look-ahead techniques in parallel and pipelined IIR 				
Digital filters.				
• Develop an algorithm or architecture or circuit design for DSP applications				
Question paper pattern:				
• The question paper will have 10 full questions carrying equal marks.				
• Each full question consists of 16 marks with a maximum of four sub				
questions.				
• There will be 2 full questions from each module covering all the topics of				
the module				
• The students will have to answer 5 full questions, selecting one full				
question from each module.				
Text Book:				
Keshab K.Parthi, "VLSI Digital Signal Processing systems, Design and				
implementation ", Wiley 1999.				
Reference Books:				
1. Mohammed Isamail and Terri Fiez, "Analog VLSI Signal and				
Information Processing ", Mc Graw-Hill, 1994.				
2. S.Y. Kung, H.J. White House, T. Kailath, "VLSI and Modern Signal				
Processing ", Prentice Hall, 1985.				
3. Jose E. France, Yannis Tsividis, " Design of Analog - Digital VLSI				
Circuits for Telecommunication and Signal Processing ", Prentice Hall, 1994.				
4. Lars Wanhammar, "DSP Integrated Circuits", Academic Press Series				
in Engineering 1st Edition				

4. Lars Wannammar, "DSP Int in Engineering, 1st Edition.

	RN RECOGNITION and MACHIN		
[As per	Choice Based Credit System (CI SEMESTER – III	BCS) scheme]	
Course Code	18ESP332	CIE Marks	40
Number of Lecture Hours/Week	04	SEE Marks	60
Total Number of Lecture Hours	50 (10 Hours per Module)	Exam Hours	03
	Credits – 04		
concepts for model s making and statistic	he objective of the course is to d election and parameter estimati al learning problems. Special e on, regularization, feature selection urning.	on in recognition emphasis will b	n, decisior e given to
	Modules		RBT
	Module-1		Levels
Dimensionality, Decisi Distributions: Binar	oility Theory, Model Selection, on Theory, Information Theory y and Multinomial Variables, ponential Family, Nonparametric	The Gaussian	L1,L2
	Module-2		
Variance Decompositio Comparison Classification&Linear	odels: Linear Basis Function Mo on, Bayesian Linear Regression, T Discriminant Analysis: ic Generative Models, Probabilistic Module-3	Bayesian Model Discriminant	L1,L2,L3
Supervised Learning			
Kernels: Dual Repres Function Network, Gas Support Vector Mac Vector Machines	hines: Maximum Margin Classi eed-forward Network, Network	fiers, Relevance	L1,L2,L3
The same second stars and	Module-4		
Maximum likelihood EM.	C-means Clustering, Mixtures o EM for Gaussian mixtures, Altern	native View of	L1,L2,L3
Dimensionalismo D	eduction: Principal Compone	nt Analysis,	
Factor/Component	Analysis, Probabilistic PCA, iable Models (Ch.:9,12)	Kernel PCA,	

Probabilistic Graphical Models: Bayesian Networks, Conditional	
Independence, Markov Random Fields, Inference in Graphical	L1,L2,L3
Models, Markov Model, Hidden Markov Models(Ch.:8,13)	
Course Outcomes: At the end of this course, students will be able to	
 Identify areas where Pattern Recognition and Machine Learning ca solution. 	an offer a
• Describe the strength and limitations of some techniques used in	
computational Machine Learning for classification, regression and	density
estimation problems.Describe and model data.	
 Describe and model data. Solve problems in Regression and Classification. 	
• Solve problems in Regression and Classification.	
Question paper pattern:	
• Examination will be conducted for 100 marks with question paper	•
containing 10 full questions, each of 20 marks.	
 Each full question can have a maximum of 4 sub questions. 	
• There will be 2 full questions from each module covering all the to module.	pics of the
• Students will have to answer 5 full questions, selecting one full qu	lestion
from each module.	
• The total marks will be proportionally reduced to 60 marks as SEI	E marks is
60.	
Text Book: 1. Pattern Recognition and Machine Learning. Christopher Bishop. Spri	inger, 200

Course Code	SEMESTER – III 18ECS333	CIE Marks	40
Number of	04	SEE Marks	60
Lecture			
Hours/Week			
Total Number of	50 (10 Hours per Module)	Exam Hours	03
Lecture			
Hours			
	Credits – 04		
•	ves: This course will enable stud		
	oncept of IOT and its applications		
	IOT content generation and tran the devices employed for IOT da	1 0	works
	ion access technologies	ia acquisition and	
	ome use cases of IOT		
	Module-1		RBT
What is IOT	mount 1		L1, L2
Genesis, Digiti	zation, Impact, Connected Roa	dways, Buildings,	
Challenges	· · · ·		
	rchitecture and Design		
	l new network Architectures,		
	M2M architecture, IOT world for	um standard, IOI	
Reference mode	el, Simplified IOT Architecture. Module-2		
IOT Network A	rchitecture and Design		L2,L3
	ional Stack, Layer1(Sensors and	Actuators),	,
	unications Sublayer), Access 1		
Gateways and	backhaul sublayer, Network tr	ansport sublayer,	,
IOT Network ma	8		
	tions and Analytics) – Analytics	s vs Control, Data	
vs Network Ana	gement and Compute Stack		
IOI Data Malia	gement and compute Stack		
	Module-3		
Engineering IC			L2,L3
Things in IOT –	Sensors, Actuators, MEMS and	e e	
	s, WSN, Communication protoco		
	ns Criteria, Range Frequency bar	· ·	
	opology, Constrained Devices, C	onstrained Node	
Networks	hnologies, IEEE 802.15.4		
TOT ACCESS TEC			
Competitive Tec	hnologies – Overview only of IFF	CE 802 15 40 4e	
-	chnologies – Overview only of IEB	EE 802.15.4g, 4e,	
IEEE 1901.2a	chnologies – Overview only of IEE ces – LTE Cat0, Cat-M, NB-IOT	EE 802.15.4g, 4e,	

En sin a sin a IOD Nature she	1014
Engineering IOT Networks	L3,L4
IP as IOT network layer, Key Advantages, Adoption, Optimization,	
Constrained Nodes, Constrained Networks, IP versions,	
Optimizing IP for IOT.	
Application Protocols for IOT – Transport Layer, Application	
Transport layer, Background only of SCADA, Generic web based	
protocols, IOT Application Layer	
Data and Analytics for IOT – Introduction, Structured and	
Unstructured data, IOT Data Analytics overview and Challenges.	
· · · · · · · · · · · · · · · · · · ·	
Module-5	
IOT in Industry (Three Use cases)	L3,L4
IOT Strategy for Connected manufacturing, Architecture for	
Connected Factory	
• Utilities – Power utility, IT/OT divide, Grid blocks reference	
model, Reference Architecture, Primary substation grid block	
and automation.	
• Smart and Connected cities –Strategy, Smart city network	
Architecture, Street layer, city layer, Data center layer,	
services layer, Smart city security architecture, Smart street	
lighting.	
Question paper pattern:	1
• Examination will be conducted for 100 marks with question	noner
-	i papei
containing 10 full questions, each of 20 marks.	
• Each full question can have a maximum of 4 sub questions.	
• There will be 2 full questions from each module covering all th	e topics
of the module.	
• Students will have to answer 5 full questions, selecting of	one full
question from each module.	
• The total marks will be proportionally reduced to 60 marks	as SFF
marks is 60.	
Course Outcomes: After studying this course, students will be able	
Understand the basic concepts IOT Architecture and devices em	
Analyze the sensor data generated and map it to IOT protocol sta	ack for
transport.	
• Apply communications knowledge to facilitate transport of IOT d	ata over
various available communications media.	
• Design a use case for a typical application in real life range	ing from
sensing devices to analyzing the data available on a server to	-
tasks on the device.	perioriii
Text Book:	0
Cisco, IOT Fundamentals – Networking Technologies, Protocols, Use	
for IOT, Pearson Education; First edition (16 August 2017). ISBN-10	:
9386873745, ISBN-13: 978-9386873743	
Reference Books:	
Arshdeep Bahga and Vijay Madisetti, Internet of Things – A Hands of	on
Approach', Orient Blackswan Private Limited - New Delhi; First edit	
(2015), ISBN-10: 8173719543, ISBN-13: 978-8173719547	